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Ab.uracl

.. A new approach is introduced to estimating object surfaces in three.dimensional space from a

sequence of images. _ A surface of interest here is modeled as a 3-D function known up to the values of, .......

a few parameterS.. The approach will work with any parameterizadon. Howev_, in work to date y_e
have modeled _bjects as patches of spheres, cylinders, and planes,---primitive objects. These pnmtttve

surfaces are s_.ial cases of 3-D quadsic surfaces. Primitive surface estimation is ueated as the general
problem of _mutlmum Ilkellheed parameter estimation based on two or more functionally related data
sets. In "ettL_Jase. these data sets constitute a sequence of images taken at different locations and orien-

tations. A simple geometric explanation is given for the estimation algorithm. Though various tech-
niques can he used to implement this nonlinear estimation, we discuss the use of gradient descent.

Experiments are run avA discussed for the case of a si_ere of unknown location. These experiments

graphically illustrate the various advantages of usin_/_nany images as possible in the estimation and
of distributing camera positions from first to last over as large a baseline as possible. In order to
extract all the usable infonnation from the sequence .of images, all. the-images--shonld he available

simultaneously fc_ the parameter estimation. We_introdace the use of asymptotic Bayesian approxima-
'_ tions in order to summarize the useful information in a sequence of images, thereby drastically reducing

,,. both the storage and amount of processing required,,_The attractiv_eness of op(Bayesian approach is that

" now alltlkusu_.t_Is¢Sf S_tical signala_iai_siscan he brp6ght to bT(ur,the informationextraction

appears to,'he _6bust arldcomi_6i_tionally reasonable, the co_epts late/g_metric and simple, and essen-
tially oiximai accuracy should result.

_? /_

/

/

1. Introductioa

Essentially all 3-D object surface estimation from multiple views to date is based on either active stereo using a
laser and one or two cameras for triangulation, or on passive stereo involving matching points in two images and using

triangulation, or on optical flow [l]. [I0]. [I I]. We suggest a new approach in which surfaces of complex objects are
approximated by a few patc,'les of 3-D parameterized surfaces, and these parameters are estimated from two or more
images taken by calibrated cameras from different locations and directions. These parameterized patches are referred to
as primi6wr objects. We formulate the parameter'estimation problem as standard maximum likelihood estimation, given
two or more functionally related data sets. Estimation accuracy is achieved by processing data in blocks (which may be

large), in addition to processing man., _,aages and with camera positions distributed over as large a baseline as possible.
The actual processing is simple standard statistical signal analysis. This approach, first presented in [4], is completely
new as far as we know. In summary, th_ conuibution of this paper is the treatment of 3-D ,_urface inference as a stan-

dard ma,ximum likelihood parameter estimation problem requu'ing low data storage capacity and where parameter esti-

mat_ are updated recursively as each new image in a sequence of images is received and processed.

Central to 3-D surface estimation from two (or more) images taken from cameras in different Itx:ation._ and orienta-

tions is the pairing of points flora two images that are images of the same point on a 3-D surface. This matching of
points in two images is usually done :.n either of two ways. (i) If the two cameras are physically close and their optical
axes are almost parallel, then their images will differ from one another only by translation---one will he a shifted version

of the other. Then image 1 can be partitioned into patches, and each patch cross-conelated with image 2 to find its loca-
tion in image 2. Once this correspondence is known, the locati,_n of the surface region in 3-D space seen in the pair of

corresponding image patches can he determined by triangulation. Since the surface region seen is usually curved, one
would like the patches to he small in order to locate the surface region seen accurately. However, if the images are

noisy, large surface patches must he used to accurate,y estimate a pair of corresponding patches in the two images.

71



Significanttriangulatk)nenunoccurwhenthecameraopticalaxesare close together and almost parallel because of
matching errors due to image noise, and because 3-D object surfaces are curved. Additional triangulation error occurs

because there is some en_ in camera calibration. (ii) An alternative approach that permits a large angle between the

camera optical axes to improve triangulation accuracy is to locate conesponding small local features in the two images.
An example of such • featme is • vertex of • polyhedron. For a curved surface., contours on the surface age features
often used to be matched in pairs of images. The difficulty here is that • large amount of pattens recognition may be
necessary to recognize • pair of corresponding features in the two images. Past efforts at cmss-conelation of large image

patches, as in (i), has been unsuccessful here because a patch in one image will be • distorted version of • conesponding

patch in the other image.

The work closest in spirit to outs is the recent work of Faugeras, Ayache and Faverjon 181, who develop the idea

of estimating points and lines on a 3-D object surface, o¢ planar surfaces, from a sequence of images. More specifically,
'they assume that the probability distribution for the estimates of points on a surface based on a pair of images is known.
They then assume that • sequence of such estimates and associated distributions are known for • sequence of images.

Tbek con_bution, then. is to use the extended Kalman filter for combining this sequence of estimates to obtain improved
estimates of the surface points. They derive the equations for estimating lines, and suggest that it can be extended to
planes. Among the errogs.qbey take into account, are those in camera calibration. Their concept is important' though
they do not tackle here the problem of optimally estimating the surface points or lines directly from the data in the

images.

Our paper is an expansion of one where our 3-D surface estimation algorithm was first proposed [4]. in subsequent

papers, we showed that our basic estimation algocithm is maximum likelihood estimation, and derived Cramer-gao

irreducible lower bounds on the parameter estimation error covariance marcus [6], and we also discussed the use of
MaAov Random Field (stochastic process) models for 3-D surfaces [5] as a generalization of the use of parameterized
surface models. These and the present paper together constitute a new Bayesian theory for 3-D surface estimation based

on a sequence of noisy images.

Sections II.A - II.C introduce the tra_formatloes necessary for understanding the relation of images in two or more
views. Sections III.A - III.B describe the performance functional and the gradient descent algorithm used in estimating

the a priori unknown 3-D object parameters based on the use of two images. Section III.C provides a very simple

geometric interpretation of the algorithm. Sections IV.A - IV.D extend the approach for use of a sequence of images that
might be taken by a moving camera. In order to arrive at a compotationally feasible algorithm, we introduce the use of
maximum likelihood estimation here. This development also points out that the algorithm described in section 111 is

maximum likelihood estimation. The importance of this observations is that maximum likelihood estimaton ate known
to converge to the true parameter values, and are known to have minimum estimation error covariance as the number of
ot, servations become large. In section V we introduce a somewhat different estimator for a moving camera, and point
out that it hzs certain desirable computational properdes but is less accurate. This algorithm is somewhat similar to the
use of opticalflow.

II.A Notation and Description of Camera Motion

Let P be a point in 3-D space and r = (x y z)Tt be its coordinates in the fixed orthogonaZ world reference frame.

Since we assume that objects do not move, this reference frame is fixed with respect to the objects viewed by the cam-
era, and we will call it the object reference frame (ORF). Let r(n) = (x, ys zO T be the coordinates of the point P in
CRFn, the reference frame attached to camera n. This reference frame is such that: (1) the camera optical axis is parallel

to the zs axis, and it I,_ks at the negative zs axis; (2) the xs and ye axes are parallel to the sides of the image; (3) the
origin of the reference frame coincides with the center of the image plane. The image is corrected so that the view is

tot inverted top to bottom and left to right, i.e., a central wojection is used.

Let B(n) denote the 3×3 orthogonal rotation matxix that specifies the three unit coordinate vectors for CRFn in
terms of the three unit coordinate vectors for the OR/:. Let ;c(n) specify the origin of CRFn in the ORF. Then

r(n) = Br(n) Lr- r_(n)] . and r = B(n)r(n) + r_(n). (I)

The roeation matrix B(n) and the translation vector re(n) are known for calibrated cameras. In this paper, we will use b,

to represent a vector having as its components the parameters that specify both B(n) and rc(n).

tA symboliaboldf_ is•columnvecto¢,• superscnlxcapit_T attachedtoa vectc¢dcna_-svect__nspoue.
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Sar_ae Psrametzrhu_oa

Out' q35pmachis applicable to any parmntler/,ed _Tface. A few re•earthen have used differential geometric:
paties, such u Gins•tan curvauue and mean curvatur_ m describe surfaces, see (21. These are useful for surface
parametefizadon becausethey are ceordinate bee. in genend, the surfaceswe want to estimate can be descrilxKlby m

impUcit fu-u_k3a with respect to the 01_:

g(r; u) = g(x, y, z; It) - 0, (2)

where • is theparametersdescribingthe smfacewith reSlm:t to the ORF. i_r example, the equation for the generalqua-
surface is •

attxs + 7.anxy + 2atsxz + a_ + 2a_yz + assz2 + 2aux + 2suy + 2a_z + t, = O. (3)

In this case we denote • = (a,. an ..... 844)T.

ILC Images of' an Object Surface Point in Two Image Frames

As shown in Fig. l.a, P denotes a point on a par•increased 3-13 surface of interest. This surface is desc_bed by a
function in the Oi_ (see section II.B). The function is uniquely dete_n_d by specifying the values of a parameter vec-
tor a. Point P on the object surface is seen as points having coordinates s and u in images I and 2, respectively. We
assume a Lo.mbertian reflectance model. Then the images of point P at s and u will have the same intensity. The tech-
niques lXOposed will not apply to specular reflectors, without modification, because the location of points on the object
surface at which specular reflection occun depends on the camera location. Since most surfaces of interest are largely
Lamberdan, the assumption is a useful one. Hence,

is(u) = ll(s) (4)

where It(u) and 12(s) are the picture functions (image intensity functions) in Frames ! and 2, respectively. For those
cases where the Lamhe_an assumption does not apply, a possible modified approach is to use an edge map. Here, pix-

el• are given values of 128 or 0 depending on wheUm they are detected as being edge points or non edge points, respec-
tively. These mzps are then smoothed to obtain more cominuousarrays, and theseare used as though they me regular
picture functions in our estimation algorithms. The usefulnessof the edge map is that it is a t_st_sentation of rapid
change* in the object surfacepatterns, and largely unaffectedby the presenceof some specularcomponent in theobject
surface. Experim_ts usingedge maps with our algorithm are describedin [6].

For simplicity, we use the orthographic projection model [71 for image formation, i.e., all rays from points on the
object surface to the camera are roughly parallel. (With slight modification, all of our results can be used with the per-
spective projection m(xiel_) Let r(l) = (xt Yt zl) T be the coordinates of the 3-D surface point P with respect to CRFI,
and r(2) = (x2 Y2 Z2)T be the coordinates of the point P with respect to CRF2. Then, under the assumption of ortho-

graphic projection,

s = (xl yl)T, u = (x2 y_)T.

If we pick a point s in image plane !, it will correspond to some point P on the 3-D surface. If this point P is also seen
in image 2, its image in image plat,e 2 will occur at some coordinate u. Therefore. given some point s in image 1, if we
want to coml_te the cor_sponding image point u in image 2 based on the current estimation of •, we can:
(i) first, find the 3-D location of the corresponding surface point P;
(ii) then, find the image point U corresponding to P.

In step (i), .-epfesent the surface point P with respect to CRFI by r(1) = (xi Yt zt) T. Using equations (I) and (2),

the equation of the surface is

g(r; st) = g(B(l)r(l)+rc(l) ; t) = g( B(l)(xt Yt z0T+rc(1) ; n) = 0. (5)

Since the point P resides on the surface, r(l) must satisfy the above equation. Therefore, given s = (xt yl) T. we can

solve equation (5) for zt • An example for the spherical surface is given in the next section.

In step (ii), we want to compute u. Now that we have obtained r(l) from step (i), using equation (I) we can co•-
pule u = (xz y2}T by
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C= BT(2)B(I)andd=BT(2)(re(l)- re(2)).Then,pmlitloatheCmatrixsndd vectotas:

C= [c21 ' d = ,

where CIt is _ cl, and cT sm 2xl, c_ is a number, • is _1, md d3 is • •umber. From the ptecedi•g:

u = Ci1S 4- et2zl(s, btA) + e.

Combining steps (i) sad (li) shove, we denote the functional relationship (6s) between • sad u by

u = h(s, b. z(s.a) ),

It,here the vector b il_indes b I _ b2, _ specifies Ctl, Ci2, and e.

(6)

(_)

(7)

nl.6 Estimation of Use P•rsmeterized Surface Usins Two Images

if we know the camera position, b, and the true smt"aceparameters, aT, the•

It(s) = la(h(&b,z(s,aT))) (8)

foc each t Choose a region in image 1. Denote this pixel set in this region by D. Consider the error measure

co(a) = _ lit(s) - I,( h(s,b,z(s,')))] z. (9)

The• eo(a) is a minimum at a = aT. Our problem is to estimate aT by minimizing (9) with respect to a.

To estimate aT b_tt minimizes (9), we choose to use the gradient method as follows:

Beo(a_)
at..1= s, _s _' '.10)

ha(a,)
wbefe As defends on co(am) and _ and has magnitude that goes to 0 as n goes to infinity.

&o
There are several ways to compute the gradient --_--. We present one of the methods used in our experiments.

Taking the derivative of (9) with respect to a, we have

aeo rl "1al2(u)
--_ = -2 Y--'L,(s) -_ I2(u)]---_--. (11)

mD

where u is a/unction of • as shown in (7). Use of the chain rule gives$

_I2(u) = 012(u) Bu _z(_ a) (12)
aa au _ Ba "

alz(u)
wbere n = b(s, b, z(s,a) ) as in equation (7). The first term _ c._n be computed approximately using the sobel

. .

operator. The second tm'm --_ ts just a constan: provided that we assume the orthographic lxojection model This can
be shown as follows. From equation (1)

r(2) = Bx(2) [r - re(2) 1 , (I)

and upon using the nomfioa

r(2) = (x2 Yz ZT.)T, U = (X 2 y2)T, r = (x y z)T,

euat Blz(u)
1:Timnotationusedhere is _ i8• K componentrowvector,whereK is the number_ the _nts in columnvectort
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we have _ = (BT(2)is BT(2)Z0T, where BT(2)q meam the ijasdement of matrix BT(2).

In general, it may be inconvenient to express z as an expUcit function of a. Hence, we compute the third term by

az(L a) ag(x,y.z,a) / ag(x,y,zj) (13)
aa = aa Oz

Hill An Example: The Sphere

To illustrate the approach, conskknr a spherical surface described by the equation

(x - xo): _-(y - yo)2 + (z - Zo)2 = Rz. (t4)

Pot this su_ace, z can be solved for explicitly, via

z = Zo+ (R2 - (x - Xo)2 - (y - yo),)la. (13)

The positive square root is used since the outside surface of the sphere is seen by the camera looking in the negative z
direction. Hence,

_ az 8z _z
( )=(ax. ay, azo "_') 06)

= ( (x - xoY(z- z_, (y - y_(z - z,), i, _(z - zo) )

az
and z - zo = (Ra - (x - xo)z - (y - yo)a )_. The vector _- can be computed direcdy from this.

The analogous equations for planes, cylinder and general quadrics are presented in [6].

IILC Algorithm Operation Interpretation

Fig. lb is useful for illustrating, in two dimensions, the operation of our algorithm for estimating at. Spheres in 3-
D are shown as circles. Consider the processing of the image patch between points s' and s" in Frame 1. This patch is
the image of the patch between points p' and p" on the true sphere labeled at. The same patch on the sphere surface
gives rise to the image patch between points u" and u" in Frame 2. Now suppose the system's estimation of at is i. The
associated sphere is shown. The performance functional for the estimate of a is given by (9) and is computed as follows.
The system thinks that the locations on the sphere surface that give rise to the images at points s' and s" in Frame 1 are
the intersections of the dashed fines, from g and s", with the sphere labeled &. These sphere surface points would be
seen as the images at point h" and h" in Frame 2. Hence, the system takes the image patch between points [s' and [s" in
Frame 2 and assumes that the image st each point u in this interval is the same image as the image at a point s in the
interval between s" and s" in Frame 1. The points u and s am related geometrically as in the figure, or algebraically by
(4). Performance functional (9) requires computing this en_r It(s) - 12( h(s, b, z(s,a)) ).

We make the following interesting observations. From the geometry of image formation in Fig. lb, the varying
scale change that maps the image patch ova" interval [s; s"] in Frame I into the image patch over interval [u', u"] is
seen. Note that both a scale change and a translation am involved in this 2-D illustration.

If the incorrect a is used in computing the performance functional (9), the patch of image used in Frame 2 is that
over the inte_al [b', b"]. Note that this interval is both a shift and a varying scaring of the interval [u°, u"]. If instead
of a sphere, we were dealing with _ planar surface, the scale Change would be constant throughout the image.

IV Estimation or Parametrized Surface Based on a Sequence ofImages

Now suppose a sequence of images it available for estimating aT. the true parameters of the surface. Flow can
best use be made of this data set? In this section we develop a computationally reasonable approximately maximum
likelilmcxl estimator (nde) for mr.

IV.A The Model

The model that we use for the nm image l,(u), rED,, is that of some true picture function I._(u) plus additive
white noise having variance o z. Hence, I.(u), ueD,, is a set of random variables having joint probability density
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function (pdr)

E,.<.,-,<.,1')
whexe d. is the numberof pixels In D.. We inlroduce the more com_l_Ctnolation: u.(s,a)• b(s,b,,I), and
I_(u,a) • h-i(u,bma), whexe bl is the transformation plameters specifying the n camera position. Let In denote the

of icture function values, i.e, it has components l,(u), ueD,. Let I_ denote the vector having components
vector p . . " T T T
pz(u), u_D.. Then (17) ma funcuon of the parametervector (IG ¢0 a ). Because of the Lambertianassumptionfor
image fonnation,

p.(u) = p.t(s.(u,a)). (18)

Hence, the Ixz for all n can be specified in terms of Sit. Then ct = (IXtT o _ iT) T is a parameter vector that specifies the

pdf's (17), for all I,. Since the additive image noise is independent from image to image, the log of the joint pdf of

It ..... IN is

L_a) = In IRIi, lz ..... IN I _t)

N 1 N ]') (19)
l,-i J "il"n."

Our goal is to find AN that maximizes (19). Since this estimate is a maximum likefihood estimate (nile), we know that itN

has certain desirable properties such as converging to aT as _".da -@ _, and having minimum covariance matrix for the
a,,l

N
effo¢ in the estimation of aT as _"_du becomes large. The difficulty here is that lit is a priori unknown. Hence, in order

m,l
to compute llN we must simultaneously compute jltN, the estimate of IXt based on Isunl, .... IN. Though this looks like a
formidable computational challenge, it is in fact easily manageable. In [6] we showed that (9), the performance func-
tional we minimize for estimating aT in the two picture case, is equivalent to (19) for N-2.

IV.B The Asymptotic Representation

As in section Ill.A, gradient methods can be used for minimizing -LN(a). A problem here is that N inlages must
he stored and processed simultaneously. This incurs both a great amount of storage and a large amount of proc__ssing for
each N. An effective approximation for avoiding this storage problem can be had as follows. Let I__ denote

It,12 ..... IN. In [3] it is shown that
¢

(20)

where the function _F(T_, 01) is a KxK matrix having ijth element

[?(_, O_)],j : -_-----_ inp(_l a) il,," o_ (21)

and K is the number of components in a. Hence, (20)has a Gaussian shape in cx with mean ctN and inversecovariance

matrix _F(I_N,A_).

Now suppose we wish to compute _+i. We can write p(T_tla) = IXT_._la)p(IN+tlct),so thatupon using(20),

thereresults

[_1 ] I _N:_F(l_N,a_d(a - _q_)+ Inp(IN+'Ia) (22)LN+t(a) = n p(i,I ON) - -_.(a -

The appeal of (22) isthatallthe usefulinformationin I_Nissununarized in the quadricform, i.e.,the second term on the

righthand side of (22). Notice thatonly the two rightmostterms in (22)are functionsof a. Now _i can be found

approximately as the atthatmaximizes (22). Gradient descentcan be used on (22). The gradienthere issimply
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a
_t.,_t(a) = q'(_, _).(a- _) - -_ lap(l_,.s Ja). (23)&x

There is co_iderable computatlou he_e, since there are M2 components for Its in an MxM plxel patch, and a would
_ore have Mz + K + I comp(menls. A simpfillcatiou is possible upon realizing that since the dependence of (22) on
It t is as a stun of two quidricl in llt, a simple explicit value can be found for l_t0_t) in terms of _, l_t, qs(T__l_,_), 02,
and a. The resulting function to minimize is then a function of only o_ and a, hence, only K+I parameters. Gradient
descent can be used for this purpose. This solution is explored in [9]. Though this should provide the most accurate
estimate for Or, for a number of reasons we have minimized a simpler function.

IV.C Approximate Llkelihood Maxlmlzatloa

In this section, we treat ll(s), seD, as if it were Pl(S). Then P.t is no longer treated as unknown -- only o2 and a
am unknown. If our goal is to estimate a only, then we do not have to estimate oa since oa gives information only about
the accuracy of the estimate for a (see [6]) but does not affect the value of the estimate for a (see [9]). Hence, ct = a.
For practical reasons, instead of letting Dn be in arbitrary subset in image plane n, we proceed analogously to the two
image problems in Sec. III.A.. Hence, (17) becomes

-dt_ 1 2}p(iu[a) = (2_ 2) exp_-= [ln(uu(s,a))-It(s)] • (24)
LMD 1 _.vo

Then,

1 - aN)T't'(_, aN,O_)(a aN)LN+t(a) = in P(IN IaN,O_) - ._(a (25)
+ In p(IN+t Ia, o2).

Now, our goal is to compute a_l, the value of a that minimizes the negative of (25). We suggest a gradient descent
algorithm similar to that used in Sec. III.A. Let liN÷t_ denote the estimate for aT after the ku_iteration in the N+I 't stage
(i.e., the N+I st stage is that following the input of the N+I st image and prior to the input of the N+2 no image). Then we
compute aN+t as the limit of ItN+t.kin (26).

aLN+t(a ) [

_lN+l.k÷t -- _lN+lJt + SCALE' a_ l.-t..,." (26)

From (24) and (25),

[I ] alN+,(UN+,(s.a))aLN+t(a) = W(/_jq,AN,02)(a - _ + O-2 _ N÷t(uN+t(s,a)) - It(s) (27)
_a aa

ND 1

Once q_t is computed. '.U(l_N,aN, o 2) can be updated to _F(]'_j,_+t,[IN+t,02) by

q'(]'_N+t,aN+t,0 "2)----W(T_.N,aN, 02) -- B--'_a In p(IN+tla, 02) I (28)
[llmlN¢. i

with - _aln p(l_t la.02) a matrix having ijth element

0-2 Z t [IN+I(u_I(s'a_.i))-IIis) ] a_IN+I(UN+I(S'IN'I))
..o, _" . aaja_

[alN+t(UN+t(S,_N+0) alN+t(UN+t(s,aN+0) ] }+L •
For brevity, denote q'(Ijq, aN, 02) by _FN. Then the incremental stereo algorithm is summarized as follows:

(29)
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I.

2.

3.

4.

5.

6.

Read image 1.

Set _Ft = 0.

For N > 1.

Read image bl+l.

Compute ANby using Eq. 26 iteratively until it converges.

Compute WN÷t by Eq. 28.

IV.D Experiments With the Algorithm in Section IV.C

Figure 2 shows a sequence of nine computer generated images of a sphere. The images were generated by taking
a few images of faces with a solid state T.V. camera, and using the computer to project these images onto a sphere.
Using the pattern on the sphere generated in this way, the computer was then used to generate the images that should be
seen by a camera at nine locations and with a specified CRF at each location. For this experiment the camera moved
along a circular arc of radius 2000 units lying in a horizontal plane. The camera optical axis pointed to the center of this
arc, and there was no rotation of the image plane about the optical axis. The angles between the camera optical axes in
successive images were 5°. The patch of subimage used in each of the nine images is the region about the left eye of
the tight.most face inthe image. The patch of subimage is outlined as roughly a small square nn white. The parameters
specifying the sphere are (x0, Yd,Zo)T, the sphere center, and R, the sphere radius. In the experiments run, the sphere
radius was assumed to be known and only the center was estimated. Table I shows the values of ANfound. The initial

guess used for the sphere center was in error by a tittle more than the sphere radius of 128 units, The final estimate is in
error by roughly two units. The optical axis of the camera moved through an angle of 40 ° from its first to its last posi-
tion. These images were noiseless. However; some error is introduced because images are spatially quantized into pix-
els. Table 2 shows the estimates/l_ for a more noisy image sequence. Each image here is the image in the correspond-
ing position in Fig. 2 plus white Gaussian noise. The added noise has standard deviation of 5 units (i.e., variance of 25
units). The initial estimate At used here is also in error by about the sphere radius. The final error, based on nine
images, '_sa little bit more than that in Table 1, but it is small. The accuracy of the algorithm appears to be remarkably
good considering the small patches of data used in the estimation. In practice, image 1 would be partitioned into many
squares, and a sequence of estimates would be obtained for each. The information obtained from each patch would be
optimally combined using the methods presented in [3], thereby greatly improving the accuracy of the estimate of aT.
With the initial error used here, the algorithm in (26) went through about 8-10 iterations to compute aN at each stage.

Figure 3 contains plots of eD(a), equation (30), as functions of xo and Yo, with zo held fixed at its true value, -2000.

eD(a) = _ _ u(u)- _t(sn(u,a)) , (30)
e_l u_ID n

The purpose of these plots is to show how eD(a), which is the function that must be minimized to maximize (19), nar-
rows in the vicinity of its minimum as the number of images used increases. Since the height of er_(a), i.e., the distance
between its minimum and maximum is an increasing function of the number of images used, we have only plotted the
functions in the vicinity of their minima. That is, the plots stop at a height of roughly 3000 units above the minima.
The functions shown _re based on the use of 2, 6, and 10 images, respectively. It is seen that the functions narrow

appreciably in going from the use of two images to the use of 10 images. In Fig. 4, curves of eD(a) :we again shown ,
but only two images axe used in each case. However,, the angle between the pair of camera optical axes varies, with
angles of 1°, 5°, and 45 ° for the three plots shown. Notice how broad and flat the bottom of the curve asbociated with 1°
is, whereas the curve associated with 45° is much narrower, as expected. However, it is still not as narrow as the curve
in Fig. 3c where the angle between the optical axes of the first and tenth cameras is 40°. Hence, both the range of
angles spanned and the number of images used is important. The other observation of interest is that the function_ in
Fig. 3 and those in Figs. 4a and 4b are smooth, whereas that in Fig. 4c is not. The multimodal benavior of Fig. 4c is
due to the high frequencies in the pattern on the sphere surface. Tl'e effect is moderated when the angle between the
optical axes of a pair of images is xma_, and the effect is "also suppressed by the averaging that takes place when many
more than two images are used.
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Incremental Stereo

A slightly different formulation is to write the joint likelihood for the image differences 12-Ii,
14 -13, .... IN- I_..i. The joint likelihood can be written as

[,,.<.,.<...>>-,,._,<.,]'}.<,,,
I,,.l - - L '_u IiDim,.i

Here, ul_(u,a) In ll.(ui,(u,i)) denotes the point in Dl, dial the point u in Dlo-i maps to. The mean value functions
lil(_(u,a)) do not appear here since the expectation of lln(u2u(u,ltr)) - lia-l(u) for each u is 0. Also, the variance of this
difference for each u Is 202. Then aNt+i is tO be chosen to minimize

. [',,<",,<".'>'-',,-,<">]'.
Again, It Is computationally undeskable to store the N+2 images and also to processall of them simultaneouslyin order
to compute a_l. Hence, as in Sec. IV.C. we use an asymptotic approximation, Gau. sian in a, to rcpr=sent (31) when
computing ant+2.

Table 3 contains the estimatesat basedon a sequenceof images including those in Fig, 2. Note that die angle
between the optical axes for the first and last camera positionsused for the images in Fig. 2 is 40°. The viewing angle
spamied by fix the 18 camera positions used in computing Table 3 is 85°. Notice that even with using 18 images.--9
pairs of differences--the algorithm in Sec. [V.C is considerablymore accurate. The reaso_nis that the algorithmminim-
lldng (32) usesonly the differences in pairs of images taken with camera optical axes thlPare almost parallel. Hence, it
is small baselinestereo and suffers many of the disadvantages of the use of optical flow. if the images are noisy, die
relative accuracy of this algorithm would probably degradeconsiderably. It is interesting to note that the size of the
ingle between the optical axes of the first and last images is not very important here. Rather, improved accuracycomes
from usingmany pairs of imagesin order to averageout the effects of noisy perturbations.

On the other hand, small angle stereo permits computational advantages which we briefly touch upon. [f the cam-
era does not move much in going from the (2n-l)th to the (2n)th position, u2u(u,a), where ueD2._i, is close to u since
CRI=(2n) is close to CRF(2n-I). Hence, we can use the Taylor series expansion:

[012n(U) [°SU2n(U'a)
12.(u2o(u,a)) = I2o(U)+ L--._--u ] L. _. lab. (33)

Thus. _"

L a. j L Ab , (34)

where Ab is an incremental vector specifying the incremental rotation and the incremental origin translation for CRF(2n)
in term of CRF(2n-1). The desirability of the approximation is that in minin'.i:ing (32) with respect to a it is no longer

• _,2,(v) i
necessary to compute the u2a(u,a) and then the arrays lT.(,,a) and Bv Iv"_z,(u,a)for all ueD2a_ i. Rather we can just

use the arrays 12a(u) and an , u_D2n-i, directly. This makes for a considerablereduction in required computation.
_U2n(U,a)

Ftu'thermore, note that when computing the gradient of (34) with respect to a, ordy the term _-_ is a function of a,

and this function is very simple as seen in Eq. 6a.

The final remark of interest is that for the planar surface described in the appendix, the use of Eqs. 6, 34, and A2
(from the appendix) in Eq. 32 permits a simple explicit solution for a_t+z, the value of a that minimizes (32).

VI Conclusion

In this paper, for the first time the joi,t likelihood of two or more images as a function of the a priori unknown 3-
D surface to be estimated i.,_derived. This permits the full range of Bayesian analysis, estimation, and recognition tech-
niques to be applied to the 3-D surface inferencing problem. In particular, in this paper we develop a recursive
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|lgodthmfor themaximumlikelihoodestimationof a parameterized surface based on a sequence of images taken.
perhaps, by a moving camera. This recurmive estimator should be significantly more accurate than the use of the
extended Kalman filter, since the latter uses a linearizatlon about the N e_stage estimate to compute the N+I N stage esti-
mate whereas we use the complete information in the N+I 't image.

APPENDIX: The Plane

We derive the expression for the vector az/aa for a plane. Note that there are a number of different sets of param-
eters that can be used for representing a plane (or a cylinder, or a more general surface). We use the canonical parame-
terization in this section. We use the equation

0 = g(x,y,z) = _tx + _2Y + _mz - d (AI)

subject to the constraint

0 = f(x,y,z)= 1312+ _ + 1332- I (Ala)

Note, Idl is the distance from the plane to the origin in this representation. It is assumed that the plane is in general posi-
tion, becauseif, e.g., J3s= 0, then the plane normal is orthogonal to the first camera's optical axis, and the planesurface
is not seen by the tlnt camera since the camera then seesonly the plane's edge. Eq. (Ala) can be used to solve fro"

__ az =
in terms of Pt and P2. Hence we can take a to be aT = (Pt,P2,d). Now _ -ag/_)z" Using (Ala), we get

ap, _}f/_}J3t -2[3t _3z Similarly, aPm _}f/aPz __ _S. = p3

aP3 zpt P3x-Ptz

Og Og =y+ OP3 p,y-p2z
aa-- aP2 =

_g =_!
_d

Thus,

o,- p:.- 13,y 1 (A2)
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(a} based on I t, I_ (b) based on I s, I_.... , Is

Fig. 3 Error function

(c) based on I s, 12..... It0.

(a) with I° between optical axes

e D

y

(b) with 5° between optical axes (c} with ,15° between optical axes

Fig. 4 Error function based on two images

number of i

images used
xo Yo [ z0

initial _. 50,0 50.0 -208b.0

2 26.8 20.3 -2001.8

4 16.9 13.3 -2001.1

6 10.1 ' 10.4 -2001.4

8 8.6 8.8 -2001.2

10 10.3 8.9 -1999.9

12 5.3 4.9 -2002.1

14 5.5 1.3 -2000.+t

IO 5.9 -I.4 -2001.0

18 -0.8 -2.2 -2001..q

true a 0.0 0.0 -2000.0

Table 3
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